
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

56

Disparities Between Windows and Linux

Architectures in Containerized Dynamodb
[1] Saket Aryan, [2] Adnan Shahid, [3] Subrata Goswami, [4] Rohan Das, [5] Sabya Sachi Pal,

[6] Sagar Roy Prodhan
[1] [2] [4] [5] Siksha ‘O’ Anusandhan

[3] [6] Samsung Research Institute, Bangalore

Corresponding Author Email: [1] saketaryan2002@gmail.com, [2] adnansh2804@gmail.com, [3] subrata.g@samsung.com,
[4] rohandas0205@gmail.com, [5] sabyasachipal335@gmail.com, [6] sagar.roy@samsung.com

Abstract— DynamoDB, a NoSQL database, offers scalability and integration with other AWS services, making it a popular choice for

large-scale data storage. However, its performance can suffer with increasing table size and suboptimal schema design. This study

investigates the impact of increasing table size on DynamoDB performance across diverse platforms, hardware configurations, and

operating systems. We explore the role of optimal schema design in achieving peak performance at minimal cost and provide insights for

guiding schema decisions and platform selection. By analysing performance variations with table size growth, we aim to derive

recommendations for effective DynamoDB implementation, taking into account both performance and cost considerations.

Index Terms— AUFS, Docker Daemon, Hyper-V Containers, Native Windows Containers.

I. INTRODUCTION

Cloud computing is a model for delivering IT services over

the Internet with pay-as-you-go pricing. It has revolutionized

the way businesses operate, providing access to scalable and

affordable computing resources on demand.

One of the key drivers of the rise in cloud computing is the

exponential growth of data. Businesses of all sizes are now

collecting and storing more data than ever before. This data is

essential for businesses to operate efficiently and make

informed decisions. However, storing and managing large

amounts of data can be complex and expensive.

Cloud computing offers a scalable and cost-effective

solution for data storage. Cloud providers such as Microsoft

Azure, Google Cloud, Amazon Web Services, etc, offer a

wide range of data storage services that can be tailored to

meet the specific needs of each business. AWS currently

being the most popular cloud computing platform because it

offers a wide range of services, is highly scalable and reliable,

and is cost-effective.

II. CONTEXT

A. Structured Query Language (SQL):

It is a relational database management system (RDBMS)

that is used to store and manage data in a tabular format. SQL

databases are typically used for storing and managing

structured data that needs to be accessed and analysed in a

relational manner, such as customer information, product

information, and financial data.

B. Non-SQL (NoSQL):

It is a type of database that does not use the traditional SQL

relational model. NoSQL databases are designed to be more

scalable and flexible than SQL databases, making them a

good choice for storing and managing large amounts of

unstructured data that does not need to be accessed and

analysed in a relational manner, such as images, videos, and

social media posts.

C. AWS DynamoDB:

AWS DynamoDB is a fully managed, multi-region,

multi-master, durable NoSQL database with built-in security,

backup and restore, and in-memory caching for internet-scale

applications. DynamoDB offers consistent single-digit

millisecond latency at any scale. It is a popular choice for

storing and managing large amounts of data due to its

scalability, reliability, and performance.

D. Windows Subsystem for Linux (WSL):

Windows Subsystem for Linux (WSL) is a Windows

feature that allows users to operate a Linux environment on

their Windows devices without needing a separate virtual

machine or dual boot configuration. The design aims to

provide a seamless and effective experience for developers

who want to use both Windows and Linux at the same time.

III. METHODOLOGY

In this section, we discuss how we determined the

benchmarks and queries to be run, along with the dataset.

Before benchmarking, the main aspects to note and address

include:

1. Determining the correct table schema.

2. Identifying the appropriate Global Secondary Index

(GSI).

3. Collecting/Generating the database data.

4. Defining the queries to be performed.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

57

A. Dataset

So, the dataset was sourced from Kaggle, specifically the

"List of People Names by Countries." It comprised a total of

42,399 rows or entries, with the following column names:

1. Country Code

2. Country

3. Name of Athlete

4. Sport

Out of this, the Name, Country, and Sport fields were

selected for the final dataset. Additional fields, namely Class,

Grade, and ID, were introduced to emulate a database for

students, including information about their grades, class, and

favourite sports. It's important to note that the Class and

Grade fields were randomly generated, and no methods were

employed to ensure the homogeneity of the data. Furthermore,

the ID field was generated sequentially to mimic the concept

of a Registration Number or Roll Number. We planned to

execute queries and scans on multiple table sizes to assess the

performance differences as the table size scaled up or down.

Consequently, we opted to consider five table sizes: 10,000,

42,399 (Original Size), 100,000, 500,000, and 1 million.

Throughout the remainder of our paper, we refer to the

10,000 table as the 10K table, the original table as the 42K

table, the 100,000 table as the 100K table, the 500,000 table

as the 500K table, and the 1 million table as the 1M table.

Now, since the data was only available for the size of 42K, in

order to scale down 10000 random rows were picked and put

into the final 10K dataset with new IDs. For the scaling up the

same method was followed and only the ID was provided in

sequential order again.

B. Setting up the database

The chosen database for our study was DynamoDB. To set

up DynamoDB locally, we opted for the official Docker

image provided by AWS. Using Docker Desktop as the client,

we pulled the image from the source.After setting up the local

DynamoDB, the next task was to create the table using a

specified table schema. The chosen schema was influenced

both by the planned queries and the consideration that there is

a fixed number of countries, making it practical to use one as

a Global Secondary Index (GSI) for artificial data

partitioning.

The final schema includes the following attributes:

Student_class, country, sport, grade, and ID. For the primary

key, we decided to designate ID as the partition key, as it is

the only viable option and is relevant to the real-world

scenario. Additionally, student_class was selected as the sort

key. Regarding GSIs, we opted for a single GSI, with the

country column as the GSI partition key. This choice

facilitates the artificial partitioning of the table, especially

given the fixed number of countries. The sort key assigned to

this GSI is student_class. Furthermore, sport and grade were

assigned as Local Secondary Indexes (LSIs). Sport and Grade

were assigned to be the sort key as they had only a few fixed

values in it and they can be used to optimize the queries even

further.

C. Adding data to the database

With the database schema in mind, the next step was to

connect to the database and create it, along with adding data

to it. Python's Boto3 Library was used for database

connection, and Jupyter Notebook was used to further

execute these tasks.

To follow the DynamoDB format, a JSON file was created

with the required schema. This file was then used to create

the database inside the shared database file. Then, all the data

was read from the CSV using Pandas and added to their

respective database tables. There were no logs kept regarding

the duration of the DynamoDB data addition operation.

However, for reference, it took about 5 minutes to add data to

the 100K table, 35 minutes for the 500K table, and 1 hour and

40 minutes for the 1M table.

D. Queries

In order to test the data, and the difference in scan and

query times, we conducted tests on three different queries

with different complexities. For each of these queries,

different sizes of results were expected and delivered.

The Queries were as follows:

1. Students from India

2. Students from India in class 5

3. Students from India with grade A in class 4, and

whose name starts with ‘s’ or ‘S’

The first query is a direct look-up, and since Country is a

GSI, it should, theoretically, take O(1) time to return the

query results.

The second query is slightly more complex due to the

additional parameter. However, since the column Class is an

LSI, on paper, it should not negatively impact the look-up

time. In fact, it may theoretically reduce the search area,

resulting in improved performance.

The third query is more intricate than the previous two. It

introduces two additional parameters, Grade and Name

starting with 'S' or 's'. As Grade is an LSI, it should enhance

performance. The last added parameter, "Name starts with 'S'

or 's'", should not significantly impact the results. The query

can efficiently retrieve the mentioned data in O(1) time and

then filter the data based on the specified criteria. Hence,

including "Name starts with 'S' or 's'" in the query should not

substantially affect the performance on paper.

E. Machines

A total of four machines were used during the testing, each

with very different specifications.

The Machines

1. Machine 1 - Apple MacBook Air M1 (macOS

Ventura 13.5.1)

2. Machine 2 - HP Pavilion g6 (Ubuntu 22.04)

3. Machine 3 - MSI Bravo 15 B5DD (Windows 11)

4. Machine 4 - HP Pavilion Gaming 15-ec2008AX

(Windows 11)

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

58

Table 1. Specification of all machines used

Specifications Machine 1 Machine 2 (HP g6) Machine 3 (MSI) Machine 4 (HP)

CPU Apple M1 Intel Core i5-3210M 5th Gen AMD Ryzen

5 5600H

5th Gen AMD Ryzen

5 5600H

Memory 16 GB 8 GB 8 GB 8 GB

Memory Type LPDDR4X-4266

MHz SDRAM

DDR3 / 1600 MHz DDR4 / 3200 MHz DDR4 / 3200 MHz

Memory Bandwidth 66.67GB/s 25.6 GB/s 25.6 GB/s 25.6 GB/s

Storage 256GB SSD 240GB SSD 512 GB SSD 512 GB SSD

Storage Free 159.9 GB of 245.1

GB

77.7 GB of 218 GB 320.1 GB of 459 GB 212.1 GB of 477 GB

F. Storage Benchmarking

For Machine 1 (MACBOOK Air M1):

All (Type) Read [MB/s] Write [MB/s]

Sequential 2752.15 2399.2

Random 582.065 63.865

For Machine 2 (HP Pavilion g6):

All (Type) Read [MB/s] Write [MB/s]

Sequential 523.11 273.55

Random 61.675 96.925

For Machine 3 (MSI):

All (Type) Read [MB/s] Write [MB/s]

Sequential 2606.3 1459.115

Random 257.895 171.625

For Machine 4 (HP):

All (Type) Read [MB/s] Write [MB/s]

Sequential 1671.875 1605.37

Random 212.915 185.415

IV. EVALUATION

A. Queries

 Query 1: People from India

Results: The findings of the study reveal the following

results for different query counts:

 For a query on 10K, the count query will be 378.

 For a query on 42, the count query will be 1696.

 For a query on 100K, the count query will be 3987.

 For a query on 500K, the count query will be 20,007.

 For a query on 1M, the count query will be 39,940.

 Query 2: People from India in class 5

Results: The study yields the following results for

different query counts:

 For a query on 10K, the count query will be 74.

 For a query on 42K, the count query will be 350.

 For a query on 100K, the count query will be 812.

 For a query on 500K, the count query will be 3,867.

 For a query on 1M, the count query will be 7,604.

 Query 3: People from India with grade A in class 4, and

whose name starts with ‘s’ or ‘S’

Results: The study yields the following results for

different query counts:

 For a query on 10K, the count query will be 2.

 For a query on 42K, the count query will be 7.

 For a query on 100K, the count query will be 17.

 For a query on 500K, the count query will be 37.

 For a query on 1M, the count query will be 63.

Scan: Scan time is the same for all runs(query) since the

entire table must be iterated over to perform a scan. Scan time

may vary depending on the environment (machine) on which

it is executed.

1) Machine 1 (MacOS)

Query 1:

Table Size

(Entries)

AvgRun for

Query (seconds)

AvgRun for Scan

(seconds)

10K 0.038366 0.119098

42K 0.103153 0.635979

100K 0.162459 2.70425

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

59

500K 0.564999 80.556607

1M 1.242491 361.0251

Figure 1. AvgRun for Query and Scan for Machine 1

Query 2:

Table Size

(Entries)

AvgRun for

Query (seconds)

AvgRun for

Scan (seconds)

10K 0.020791 0.099849

42K 0.047972 0.589463

100K 0.096505 2.687555

500K 0.249246 86.205821

1M 0.422039 375.26977

Figure 2. AvgRun for Query and Scan for Machine 1

Query 3:

Table Size

(Entries)

AvgRun for

Query (seconds)

AvgRun for

Scan (seconds)

10K 0.015785 0.100204

42K 0.018136 0.578728

100K 0.022566 2.565082

500K 0.054499 85.265347

1M 0.081196 379.95171

Figure 3. AvgRun for Query and Scan for Machine 1

2) Machine 2 (Ubuntu)

Query 1:

Table Size

(Entries)

AvgRun for

Query (seconds)

AvgRun for

Scan (seconds)

10K 0.078668 0.202456

42K 0.151059 1.571861

100K 0.319824 7.194271

500K 1.329084 185.51873

1M 2.87935 779.46558

Figure 4. AvgRun for Query and Scan for Machine 2

Query 2:

Table Size

(Entries)

AvgRun for

Query (seconds)

AvgRun for

Scan (seconds)

10K 0.03044 0.198689

42K 0.087938 1.523186

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

60

100K 0.153156 7.005081

500K 0.498439 186.41436

1M 0.893432 870.96605

Figure 5. AvgRun for Query and Scan for Machine 2

Query 3:

Table

Size(Entries)

AvgRun for

Query(seconds)

AvgRun for

Scan(seconds)

10K 0.015763 0.191276

42K 0.019278 1.527247

100K 0.023669 6.950054

500K 0.070197 210.99766

1M 0.113171 875.43011

Figure 6. AvgRun for Query and Scan for Machine 2

3) Machine 3 (MSI - Windows)

Query 1:

Table

Size(Entries)

AvgRun for

Query(seconds)

AvgRun for

Scan(seconds)

10K 0.029117 1.592261

42K 0.067816 36.660815

100K 1.117506 185.348

500K 10.866278 Time Out

1M 34.746781 Time Out

Figure 7. AvgRun for Query and Scan for Machine 3

Here is a summary of the percentage increase in time with

respect to increase in data sizes:

Table size

(Entries)

Increase in result

count (%)

Increase in query

time (%)

Increase in scan

time (%)

Increase in time for scan

with respect to query (%)

10K - 42K 348.6772 132.9086 2202.438 53959.24

42K - 100K 135.0825 1547.85 405.5752 16485.86

100K - 500K 401.8059 872.3686 Time Out Time Out

500K - 1M 99.63013 219.7671 Time Out Time Out

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

61

Query 2:

Table

Size(Entries)

AvgRun

Query(seconds)

Avg Run

Scan(seconds)

10K 0.015893 1.592261

42K 0.029828 36.660815

100K 1.031821 185.348

500K 7.470234 Time Out

1M 16.592536 Time Out

Figure 8. AvgRun for Query and Scan for Machine 3

Here is a summary of the percentage increase in time with

respect to increase in data sizes:

Table size

(Entries)

Increase in result

count (%)

Increase in query

time (%)

Increase in scan

time (%)

Increase in time for scan

with respect to query (%)

10K - 42K 372.973 87.68011 2202.438 122807.4

42K - 100K 132 3359.236 405.5752 17863.19

100K - 500K 376.2315 623.9855 Time Out Time Out

500K - 1M 96.63822 122.1153 Time Out Time Out

Query 3:

Table Size

(Entries)

AvgRun Query

(seconds)

Avg Run Scan

(seconds)

10K 0.011382 1.592261

42K 0.012839 36.660815

100K 0.014303 185.348

500K 0.824029 Time Out

1M 1.683862 Time Out
Figure 9. AvgRun for Query and Scan for Machine 3

Here is a summary of the percentage increase in time with

respect to increase in data sizes:

Table size

(Entries)

Increase in result

count (%)

Increase in query

time (%)

Increase in scan

time (%)

Increase in time for scan

with respect to query (%)

10K - 42K 250 12.80091 2202.438 285442.6

42K - 100K 142.8571 11.40276 405.5752 1295768

100K - 500K 117.6471 5661.232 Time Out Time Out

500K - 1M 70.27027 104.345 Time Out Time Out

4) Machine 4 (HP-Windows) Machines 3 and 4 were both based on Windows. Despite

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

62

machine 3 having faster SSD read and write speeds than

machine 4, both of them performed identically, and no

noticeable difference was observed.

B. MongoDB Setup

Moreover, we decided to include scan times in another

popular NoSQL Database, MongoDB, aiming to measure and

analyse the performance on both Native Windows and

Docker environments.

For Native Windows, we used MongoDB CLI, ‘mongod’,

to run the database directly on the Windows environment.

Again, for the Docker environment, we established a Docker

container using the latest ‘mongo’ image. The process of

adding data to the MongoDB database was straightforward.

Using the CSV data we generated earlier, we used the

"csv-parser" module with Nodejs to convert the CSV file into

the necessary JSON format.

Further, the next step involved was adding the collection or

model to the database. To do this, we used the "mongoose"

module to create the schema design for the User/Student

model within the database.

The next step involved was populating the database, and

we opted for an easy approach. Using the JSON file created

earlier, we fed it into the Mongo Compass program to add

data to the database. This process was exceptionally fast and

took mere seconds for all table sizes in comparison to the

hours required in DynamoDB.

Further, all other steps were the same as with the

DynamoDB part, we wrote the same queries and performed

the scans with the same timing function used before, the only

change was that instead of boto3 we used “pymongo” to run

the queries.

C. Docker Architecture in Windows and Linux

Between the Windows and Linux Docker architectures,

both are almost identical but Windows used the Computer

Service layer instead of the “containerd” process, possibly

causing the Windows machine to perform poorly. However,

if all these differences are due to the Docker architecture

variance between Windows and Linux, it could most likely

be verified with the test we prepared, which it did, as shown

in the next section.

D. WSL Optimization

After some digging, we discovered that Docker

performance on Windows can be enhanced through WSL2

optimization. Following the official guidelines provided by

the Docker documentation, we implemented the best

practices for using and setting up Docker Desktop on

Windows.

1. Mac and Linux computers demonstrated superior

performance over Windows, even excluding the faster

Mac system.

2. Linux outperformed Windows significantly, despite

Windows having advantages in memory speed and

CPU performance.

3. Windows struggled with scan executions, while Linux,

though slower than MacOS, exhibited markedly better

performance than Windows.

4. Windows struggled with scan executions, while Linux,

though slower than MacOS, exhibited markedly better

performance than Windows.

5. WSL optimization involved installing WSL, adding

Ubuntu, copying shared database data to the Ubuntu

directory, reconfiguring Docker to use WSL2, and

running the container inside Ubuntu on top of

Window

Machine 3 (WSL - MSI)

Query 1:

Table

Size(Entries)

AvgRun for

Query(seconds)

AvgRun for

Scan(seconds)

10K 0.037514 0.099463

42K 0.0988 0.734957

100K 0.157216 3.087912

500K 0.820549 90.891437

1M 2.656253 Time Out

Figure 10. AvgRun for Query and Scan for Machine 3 with

WSL optimization

Here is a summary of the percentage increase in time with

respect to increase in data sizes:

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

63

Table size

(Entries)

Increase in result

count (%)

Increase in

query time (%)

Increase in scan

time (%)

Increase in time for scan

with respect to query (%)

10K - 42K 348.6772 163.3683 638.925 643.8836

42K - 100K 135.0825 59.12551 320.1487 1864.121

100K - 500K 401.8059 421.9246 2843.459 10976.91

500K - 1M 99.63013 223.7166 Time Out Time Out

Query 2:

Table

Size(Entries)

AvgRun for

Query(seconds)

AvgRun for

Scan(seconds)

10K 0.009732 0.071067

42K 0.027881 0.651922

100K 0.060008 3.425509

500K 0.251538 85.61952

1M 0.690358 Time Out

Figure 11. AvgRun for Query and Scan for Machine 3 with

WSL optimization

Here is a summary of the percentage increase in time with

respect to increase in data sizes:

Table size

(Entries)

Increase in result

count (%)

Increase in query

time (%)

Increase in scan

time (%)

Increase in time for scan with

respect to query (%)

10K - 42K 372.973 186.4879 817.3343 2238.23

42K - 100K 132 115.229 425.4477 5608.421

100K - 500K 376.2315 319.1741 2399.469 33938.4

500K - 1M 96.63822 174.4548 Time Out Time Out

Query 3:

Table

Size(Entries)

AvgRun for

Query(seconds)

AvgRun for

Scan(seconds)

10K 0.007057 0.074459

42K 0.006276 0.685363

100K 0.008715 3.032363

500K 0.023514 86.564659

1M 0.036525 Time Out

Figure 12. AvgRun for Query and Scan for Machine 3 with

WSL optimization

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 3 March 2024

64

Here is a summary of the percentage increase in time with

respect to increase in data sizes:

Table size

(Entries)

Increase in result

count (%)

Increase in query

time (%)

Increase in scan

time (%)

Increase in time for scan with

respect to query (%)

10K - 42K 250 -11.067 820.4569 10820.38

42K - 100K 142.8571 38.86233 342.4463 34694.76

100K - 500K 117.6471 169.8107 2754.693 368040.9

500K - 1M 70.27027 55.33299 Time Out Time Out

Discussion: To validate our hypothesis, we executed the

operation within the Windows Subsystem for Linux (WSL)

environment and observed a noticeable improvement in

performance. The execution time achieved in WSL closely

resembled that observed on UNIX-based operating systems.

This finding strongly suggests that the substantial

performance disparity between Windows and UNIX-based

systems is indeed attributable to the architectural differences

between Docker implementations on these platforms.

V. CONCLUSION

Through our tests, it becomes evident that there is a

significant performance gap when using DynamoDB on

Windows compared to Unix or Linux-based systems.

Notably, the slower machine initially outperformed the faster

Windows machines. However, after implementing WSL2

optimization, the performance of Windows machines is on

par with that of Mac device. This conclusion is reinforced

when observing the use of WSL2 optimization on the

Windows machine, indicating that the issue lies not with

Windows itself, but with Docker's optimization for

DynamoDB specifically on Windows. It's worth noting that

MongoDB exhibited similar performance in both native and

Docker modes, highlighting that the discrepancy is specific to

Docker optimization for DynamoDB on Windows.

REFERENCES

[1] David E Lares S, “Understanding Windows and Linux

differences in Docker Architecture,” https://medium.com/

analytics-vidhya/understanding-windows-and-linux-differenc

es-in-docker-architecture-6c224b6c9285

[2] Suyash Singh, “Increase WSL2 and Docker Performance on

Windows By 20x,” https://medium.com/@suyashsingh.stem/

increase-docker-performance-on-windows-by-20x-6d231825

6b9a

